# FLC - lesson 02 ##### Luca Oddone Breveglieri ###### 8 october 2015 ## Operations on languages Applies (and is defined) to each string in the language $$L^R=\{|x=y^R\wedge y\in L\}$$ #### Prefix-free language $$\text{prefix}(L)=\{y|x=yz\wedge x\in L\wedge y,z\neq\varepsilon\}$$ There isn't any string that is prefix of another. $$\text{prefix(L)} \cap L=\Phi$$ #### Concatenation $$L'L''=\{xy|x\in L' \wedge y \in L''\}$$ #### m-th power (m≥0) $$L^m=L^{m-1}L,m>0\;\;L^0=\{\varepsilon\}$$ --- ### Set-theoretic Operations #### Universal language The set of all strings defined over the alphabet $\Sigma$, also called __free monoid__. #### Complement of a language Set-theoretic difference between the universal language and the given language $$\lnot L =L_{universal} \setminus L$$ #### Set-theoretic difference --- ### Star Operator Also called Kleene star or Concatenation closure. Is the union of all powers of a language $$L=\{ab,ba\}\;L^*=\{\varepsilon,ab,ba,abab,abba,baab,baba,...\}$$ #### Properties: - monotonic - closed w.r.t. Concatenation - idempotent - commutes with mirroring ##### example $$\sum_A=\{A,B,...,Z\} \; \sum_N=\{0,1,2,...,9\}$$ #### Cross Operator Also called Kleene cross, or $\varepsilon$-free concatenation closure $$\{ab,bb\}^+ =\{ab,bb,ab^3,b^2ab,abab,b^4,...\}$$ #### Quotient Operator It shortens the phrases of a language L' by stripping off a suffix out of another languare L'' $$L=L'/L''=\{y|(x=yz\in L') x\in L''\}$$