#!/usr/bin/env python import numpy as np import matplotlib.mlab as mlab import matplotlib.pyplot as plt import matplotlib.patches as mpatches import seaborn import os seaborn.set() # Helper function to attach labels to the bars def autolabel(subplot, bars): for bar in bars: height = round(bar.get_height(), 1) subplot.text(bar.get_x() + bar.get_width()/2., 1.05*height, '%s' % height, ha='center', va='bottom') # Helper function to strip away the "opencl/" prefix and other stuff from all the names def stripNames (category, names): stripped_names = [] for elem in names: elem = elem.replace("opencl/", "") elem = elem.replace("/ocl", "") elem = elem.replace("/OpenCL", "") stripped_names.append(elem) return stripped_names # List containing all the platform names platforms = ['cpu', 'gpu-primary', 'gpu-secondary'] # List containing the categories of the benchamrks categories = ['short', 'long'] averageTotal = {} stderrTotal = {} # Import data from file for platform in platforms: averageTotal[platform] = np.genfromtxt('results/' + platform + '/average.csv', dtype=None, delimiter=',', names=['name', 'time', 'power']) stderrTotal[platform] = np.genfromtxt('results/' + platform + '/stderr.csv', dtype=None, delimiter=',', names=['name', 'time', 'power']) # Create the folder where to store the charts, if it doesn't already exist if not os.path.exists('charts'): os.makedirs('charts') # Dict that contains the indexes(entry in the data files) of the benchmarks taking into account their category indexes = {'short': [], 'long': []} # We cycle on the benchmarks results for the cpu (since usually they are the ones with the longest run time) and divide in two groups the benchmarks, putting the relative indexes in two lists for i in range(0,17): record = averageTotal['cpu'].take(i) if record['time'] < 30: indexes['short'].append(i) else: indexes['long'].append(i) # We instantiate a new dict to contain the average and the std err of the measurements on the various platforms average = {'cpu': {}, 'gpu-primary': {}, 'gpu-secondary': {}} stderr = {'cpu': {}, 'gpu-primary': {}, 'gpu-secondary': {}} for platform in platforms: for category in categories: average[platform][category] = averageTotal[platform].take(indexes[category]) stderr[platform][category] = stderrTotal[platform].take(indexes[category]) # Generate an array as placeholder for the x axis (we need to pass from a list to an array to take advantage of range) x = {} x['short'] = np.arange(len(indexes['short'])) x['long'] = np.arange(len(indexes['long'])) # Strip from the names of the benchmarks unwanted parts, taking advantage of the helper function defined before x_names_stripped = {'short': [], 'long': []} for category in categories: x_names = averageTotal['cpu'].take(indexes[category])['name'].tolist() x_names_stripped[category] = stripNames(category, x_names) # Helper function that create the plots of the execution time, takes as parameter the category of the benchmark we want to plot def plotTimes (category): # Initialization of the figures fig, ax = plt.subplots(figsize=(20, 10)) # Create the bar plot for the time values time_cpu_bars = ax.bar(x[category]-0.3, average['cpu'][category]['time'], width=0.2, color='b', align='edge', yerr=stderr['cpu'][category]['time']) time_gpu_primary_bars = ax.bar(x[category], average['gpu-primary'][category]['time'], width=0.2, color='r', align='center', yerr=stderr['gpu-primary'][category]['time']) time_gpu_secondary_bars = ax.bar(x[category]+0.3, average['gpu-secondary'][category]['time'], width=-0.2, color='g', align='edge', yerr=stderr['gpu-secondary'][category]['time']) # Change the labels of the x axis to contain the names of the benchmarks ax.set_xticks(x[category]) ax.set_xticklabels(x_names_stripped[category]) ax.set_title('Execution time of the various benchmarks expressed in seconds') ax.set_xlabel('Benchmark') ax.set_ylabel('seconds') # Add some patches as legend of the colors used for the various benchmarks red_patch = mpatches.Patch(color='blue', label='Execution time for cpu') blue_patch = mpatches.Patch(color='red', label='Execution time for gpu(4 core)') green_patch = mpatches.Patch(color='green', label='Execution time for gpu(2 core)') ax.legend(handles=[red_patch, blue_patch, green_patch]) # Invoke the helper function to attach labels for each bar autolabel(ax, time_cpu_bars) autolabel(ax, time_gpu_primary_bars) autolabel(ax, time_gpu_secondary_bars) # Save the obtained plot on file plt.savefig('charts/times-' + category + '.pdf') # Helper function that create the plots of the execution time, takes as parameter the category of the benchmark we want to plot def plotPower (category): # Create a new figure fig, bx = plt.subplots(figsize=(20, 10)) # Create the bar plot for the power values power_cpu_bars = bx.bar(x[category]-0.3, average['cpu'][category]['power'], width=0.2, color='b', align='edge', yerr=stderr['cpu'][category]['power']) power_gpu_primary_bars = bx.bar(x[category], average['gpu-primary'][category]['power'], width=0.2, color='r', align='center', yerr=stderr['gpu-primary'][category]['power']) power_gpu_secondary_bars = bx.bar(x[category]+0.3, average['gpu-secondary'][category]['power'], width=-0.2, color='g', align='edge', yerr=stderr['gpu-secondary'][category]['power']) # Change the labels of the x axis to contain the names of the benchmarks bx.set_xticks(x[category]) bx.set_xticklabels(x_names_stripped[category]) bx.set_title('Power consumption of the various benchmarks expressed in mWatt/hour') bx.set_xlabel('Benchmark') bx.set_ylabel('mWatt/hour') # Add some patches as legend of the colors used for the various benchmarks red_patch = mpatches.Patch(color='blue', label='Power consumption for cpu') blue_patch = mpatches.Patch(color='red', label='Power consumption for gpu(4 core)') green_patch = mpatches.Patch(color='green', label='Execution time for gpu(2 core)') bx.legend(handles=[red_patch, blue_patch, green_patch]) # Invoke the helper function to attach labels one for each bar autolabel(bx, power_cpu_bars) autolabel(bx, power_gpu_primary_bars) autolabel(bx, power_gpu_secondary_bars) # Save the obtained plot on file plt.savefig('charts/power-' + category + '.pdf') # Invoke the helper functions to plot the data for category in categories: plotTimes(category) plotPower(category)