// Standard includes #include #include #include #include //LLVM includes // Local includes #include "Parser.h" #include "Lexer.h" #include "JIT.h" using namespace lexer; using namespace jit; namespace parser{ /// putchard - putchar that takes a double and returns 0. extern "C" double putchard(double X) { fputc((char)X, stderr); return 0; } /// printd - printf that takes a double prints it as "%f\n", returning 0. extern "C" double printd(double X) { fprintf(stderr, "%f\n", X); return 0; } //===----------------------------------------------------------------------===// // Parser //===----------------------------------------------------------------------===// /// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current /// token the parser is looking at. getNextToken reads another token from the /// lexer and updates CurTok with its results. int getNextToken() { return CurTok = gettok(); } /// BinopPrecedence - This holds the precedence for each binary operator that is /// defined. /// GetTokPrecedence - Get the precedence of the pending binary operator token. static int GetTokPrecedence() { if (!isascii(CurTok)) return -1; // Make sure it's a declared binop. int TokPrec = BinopPrecedence[CurTok]; if (TokPrec <= 0) return -1; return TokPrec; } /// Error* - These are little helper functions for error handling. std::unique_ptr Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str); return nullptr; } std::unique_ptr ErrorP(const char *Str) { Error(Str); return nullptr; } static std::unique_ptr ParseExpression(); /// numberexpr ::= number static std::unique_ptr ParseNumberExpr() { auto Result = llvm::make_unique(LexerObjects::NumVal); getNextToken(); // consume the number return std::move(Result); } /// parenexpr ::= '(' expression ')' static std::unique_ptr ParseParenExpr() { getNextToken(); // eat (. auto V = ParseExpression(); if (!V) return nullptr; if (CurTok != ')') return Error("expected ')'"); getNextToken(); // eat ). return V; } /// identifierexpr /// ::= identifier /// ::= identifier '(' expression* ')' static std::unique_ptr ParseIdentifierExpr() { std::string IdName = LexerObjects::IdentifierStr; getNextToken(); // eat identifier. if (CurTok != '(') // Simple variable ref. return llvm::make_unique(IdName); // Call. getNextToken(); // eat ( std::vector> Args; if (CurTok != ')') { while (1) { if (auto Arg = ParseExpression()) Args.push_back(std::move(Arg)); else return nullptr; if (CurTok == ')') break; if (CurTok != ',') return Error("Expected ')' or ',' in argument list"); getNextToken(); } } // Eat the ')'. getNextToken(); return llvm::make_unique(IdName, std::move(Args)); } /// ifexpr ::= 'if' expression 'then' expression 'else' expression static std::unique_ptr ParseIfExpr() { getNextToken(); // eat the if. // condition. auto Cond = ParseExpression(); if (!Cond) return nullptr; if (CurTok != tok_then) return Error("expected then"); getNextToken(); // eat the then auto Then = ParseExpression(); if (!Then) return nullptr; if (CurTok != tok_else) return Error("expected else"); getNextToken(); auto Else = ParseExpression(); if (!Else) return nullptr; return llvm::make_unique(std::move(Cond), std::move(Then), std::move(Else)); } /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression static std::unique_ptr ParseForExpr() { getNextToken(); // eat the for. if (CurTok != tok_identifier) return Error("expected identifier after for"); std::string IdName = LexerObjects::IdentifierStr; getNextToken(); // eat identifier. if (CurTok != '=') return Error("expected '=' after for"); getNextToken(); // eat '='. auto Start = ParseExpression(); if (!Start) return nullptr; if (CurTok != ',') return Error("expected ',' after for start value"); getNextToken(); auto End = ParseExpression(); if (!End) return nullptr; // The step value is optional. std::unique_ptr Step; if (CurTok == ',') { getNextToken(); Step = ParseExpression(); if (!Step) return nullptr; } if (CurTok != tok_in) return Error("expected 'in' after for"); getNextToken(); // eat 'in'. auto Body = ParseExpression(); if (!Body) return nullptr; return llvm::make_unique(IdName, std::move(Start), std::move(End), std::move(Step), std::move(Body)); } /// varexpr ::= 'var' identifier ('=' expression)? // (',' identifier ('=' expression)?)* 'in' expression static std::unique_ptr ParseVarExpr() { getNextToken(); // eat the var. std::vector>> VarNames; // At least one variable name is required. if (CurTok != tok_identifier) return Error("expected identifier after var"); while (1) { std::string Name = LexerObjects::IdentifierStr; getNextToken(); // eat identifier. // Read the optional initializer. std::unique_ptr Init = nullptr; if (CurTok == '=') { getNextToken(); // eat the '='. Init = ParseExpression(); if (!Init) return nullptr; } VarNames.push_back(std::make_pair(Name, std::move(Init))); // End of var list, exit loop. if (CurTok != ',') break; getNextToken(); // eat the ','. if (CurTok != tok_identifier) return Error("expected identifier list after var"); } // At this point, we have to have 'in'. if (CurTok != tok_in) return Error("expected 'in' keyword after 'var'"); getNextToken(); // eat 'in'. auto Body = ParseExpression(); if (!Body) return nullptr; return llvm::make_unique(std::move(VarNames), std::move(Body)); } /// primary /// ::= identifierexpr /// ::= numberexpr /// ::= parenexpr static std::unique_ptr ParsePrimary() { switch (CurTok) { default: return Error("unknown token when expecting an expression"); case tok_identifier: return ParseIdentifierExpr(); case tok_number: return ParseNumberExpr(); case '(': return ParseParenExpr(); case tok_if: return ParseIfExpr(); case tok_for: return ParseForExpr(); case tok_var: return ParseVarExpr(); } } /// unary /// ::= primary /// ::= '!' unary static std::unique_ptr ParseUnary() { // If the current token is not an operator, it must be a primary expr. if (!isascii(CurTok) || CurTok == '(' || CurTok == ',') return ParsePrimary(); // If this is a unary operator, read it. int Opc = CurTok; getNextToken(); if (auto Operand = ParseUnary()) return llvm::make_unique(Opc, std::move(Operand)); return nullptr; } /// binoprhs /// ::= ('+' unary)* static std::unique_ptr ParseBinOpRHS(int ExprPrec, std::unique_ptr LHS) { // If this is a binop, find its precedence. while (1) { int TokPrec = GetTokPrecedence(); // If this is a binop that binds at least as tightly as the current binop, // consume it, otherwise we are done. if (TokPrec < ExprPrec) return LHS; // Okay, we know this is a binop. int BinOp = CurTok; getNextToken(); // eat binop // Parse the unary expression after the binary operator. auto RHS = ParseUnary(); if (!RHS) return nullptr; // If BinOp binds less tightly with RHS than the operator after RHS, let // the pending operator take RHS as its LHS. int NextPrec = GetTokPrecedence(); if (TokPrec < NextPrec) { RHS = ParseBinOpRHS(TokPrec + 1, std::move(RHS)); if (!RHS) return nullptr; } // Merge LHS/RHS. LHS = llvm::make_unique(BinOp, std::move(LHS), std::move(RHS)); } } /// expression /// ::= unary binoprhs /// static std::unique_ptr ParseExpression() { auto LHS = ParseUnary(); if (!LHS) return nullptr; return ParseBinOpRHS(0, std::move(LHS)); } /// prototype /// ::= id '(' id* ')' /// ::= binary LETTER number? (id, id) /// ::= unary LETTER (id) static std::unique_ptr ParsePrototype() { std::string FnName; unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary. unsigned BinaryPrecedence = 30; switch (CurTok) { default: return ErrorP("Expected function name in prototype"); case tok_identifier: FnName = LexerObjects::IdentifierStr; Kind = 0; getNextToken(); break; case tok_unary: getNextToken(); if (!isascii(CurTok)) return ErrorP("Expected unary operator"); FnName = "unary"; FnName += (char)CurTok; Kind = 1; getNextToken(); break; case tok_binary: getNextToken(); if (!isascii(CurTok)) return ErrorP("Expected binary operator"); FnName = "binary"; FnName += (char)CurTok; Kind = 2; getNextToken(); // Read the precedence if present. if (CurTok == tok_number) { if (LexerObjects::NumVal < 1 || LexerObjects::NumVal > 100) return ErrorP("Invalid precedecnce: must be 1..100"); BinaryPrecedence = (unsigned)LexerObjects::NumVal; getNextToken(); } break; } if (CurTok != '(') return ErrorP("Expected '(' in prototype"); std::vector ArgNames; while (getNextToken() == tok_identifier) ArgNames.push_back(LexerObjects::IdentifierStr); if (CurTok != ')') return ErrorP("Expected ')' in prototype"); // success. getNextToken(); // eat ')'. // Verify right number of names for operator. if (Kind && ArgNames.size() != Kind) return ErrorP("Invalid number of operands for operator"); return llvm::make_unique(FnName, ArgNames, Kind != 0, BinaryPrecedence); } /// definition ::= 'def' prototype expression static std::unique_ptr ParseDefinition() { getNextToken(); // eat def. auto Proto = ParsePrototype(); if (!Proto) return nullptr; if (auto E = ParseExpression()) return llvm::make_unique(std::move(Proto), std::move(E)); return nullptr; } /// toplevelexpr ::= expression static std::unique_ptr ParseTopLevelExpr() { if (auto E = ParseExpression()) { // Make an anonymous proto. auto Proto = llvm::make_unique("__anon_expr", std::vector()); return llvm::make_unique(std::move(Proto), std::move(E)); } return nullptr; } /// external ::= 'extern' prototype static std::unique_ptr ParseExtern() { getNextToken(); // eat extern. return ParsePrototype(); } //===----------------------------------------------------------------------===// // Top-Level parsing and JIT Driver //===----------------------------------------------------------------------===// static void HandleDefinition() { if (auto FnAST = ParseDefinition()) { if (auto *FnIR = FnAST->codegen()) { fprintf(stderr, "Read function definition:"); FnIR->dump(); JITObjects::TheJIT->addModule(std::move(AstObjects::TheModule)); InitializeModuleAndPassManager(); } } else { // Skip token for error recovery. getNextToken(); } } static void HandleExtern() { if (auto ProtoAST = ParseExtern()) { if (auto *FnIR = ProtoAST->codegen()) { fprintf(stderr, "Read extern: "); FnIR->dump(); JITObjects::FunctionProtos[ProtoAST->getName()] = std::move(ProtoAST); } } else { // Skip token for error recovery. getNextToken(); } } static void HandleTopLevelExpression() { // Evaluate a top-level expression into an anonymous function. if (auto FnAST = ParseTopLevelExpr()) { if (FnAST->codegen()) { // JIT the module containing the anonymous expression, keeping a handle so // we can free it later. auto H = JITObjects::TheJIT->addModule(std::move(AstObjects::TheModule)); InitializeModuleAndPassManager(); // Search the JIT for the __anon_expr symbol. auto ExprSymbol = JITObjects::TheJIT->findSymbol("__anon_expr"); assert(ExprSymbol && "Function not found"); // Get the symbol's address and cast it to the right type (takes no // arguments, returns a double) so we can call it as a native function. double (*FP)() = (double (*)())(intptr_t)ExprSymbol.getAddress(); fprintf(stderr, "Evaluated to %f\n", FP()); // Delete the anonymous expression module from the JIT. JITObjects::TheJIT->removeModule(H); } } else { // Skip token for error recovery. getNextToken(); } } /// top ::= definition | external | expression | ';' void MainLoop() { // Install standard binary operators. // 1 is lowest precedence. BinopPrecedence['='] = 2; BinopPrecedence['<'] = 10; BinopPrecedence['+'] = 20; BinopPrecedence['-'] = 20; BinopPrecedence['*'] = 40; // highest. while (1) { fprintf(stderr, "ready> "); switch (CurTok) { case tok_eof: return; case ';': // ignore top-level semicolons. getNextToken(); break; case tok_def: HandleDefinition(); break; case tok_extern: HandleExtern(); break; default: HandleTopLevelExpression(); break; } } } }