#include "hotspot.h" void writeoutput(float *vect, int grid_rows, int grid_cols, char *file) { int i,j, index=0; FILE *fp; char str[STR_SIZE]; if( (fp = fopen(file, "w" )) == 0 ) printf( "The file was not opened\n" ); for (i=0; i < grid_rows; i++) for (j=0; j < grid_cols; j++) { sprintf(str, "%d\t%g\n", index, vect[i*grid_cols+j]); fputs(str,fp); index++; } fclose(fp); } void readinput(float *vect, int grid_rows, int grid_cols, char *file) { int i,j; FILE *fp; char str[STR_SIZE]; float val; if( (fp = fopen(file, "r" )) ==0 ) fatal( "The file was not opened" ); for (i=0; i <= grid_rows-1; i++) for (j=0; j <= grid_cols-1; j++) { if (fgets(str, STR_SIZE, fp) == NULL) fatal("Error reading file\n"); if (feof(fp)) fatal("not enough lines in file"); //if ((sscanf(str, "%d%f", &index, &val) != 2) || (index != ((i-1)*(grid_cols-2)+j-1))) if ((sscanf(str, "%f", &val) != 1)) fatal("invalid file format"); vect[i*grid_cols+j] = val; } fclose(fp); } /* compute N time steps */ int compute_tran_temp(cl_mem MatrixPower, cl_mem MatrixTemp[2], int col, int row, \ int total_iterations, int num_iterations, int blockCols, int blockRows, int borderCols, int borderRows, float *TempCPU, float *PowerCPU) { float grid_height = chip_height / row; float grid_width = chip_width / col; float Cap = FACTOR_CHIP * SPEC_HEAT_SI * t_chip * grid_width * grid_height; float Rx = grid_width / (2.0 * K_SI * t_chip * grid_height); float Ry = grid_height / (2.0 * K_SI * t_chip * grid_width); float Rz = t_chip / (K_SI * grid_height * grid_width); float max_slope = MAX_PD / (FACTOR_CHIP * t_chip * SPEC_HEAT_SI); float step = PRECISION / max_slope; int t; int src = 0, dst = 1; cl_int error; // Determine GPU work group grid size_t global_work_size[2]; global_work_size[0] = BLOCK_SIZE * blockCols; global_work_size[1] = BLOCK_SIZE * blockRows; size_t local_work_size[2]; local_work_size[0] = BLOCK_SIZE; local_work_size[1] = BLOCK_SIZE; long long start_time = get_time(); for (t = 0; t < total_iterations; t += num_iterations) { // Specify kernel arguments int iter = MIN(num_iterations, total_iterations - t); clSetKernelArg(kernel, 0, sizeof(int), (void *) &iter); clSetKernelArg(kernel, 1, sizeof(cl_mem), (void *) &MatrixPower); clSetKernelArg(kernel, 2, sizeof(cl_mem), (void *) &MatrixTemp[src]); clSetKernelArg(kernel, 3, sizeof(cl_mem), (void *) &MatrixTemp[dst]); clSetKernelArg(kernel, 4, sizeof(int), (void *) &col); clSetKernelArg(kernel, 5, sizeof(int), (void *) &row); clSetKernelArg(kernel, 6, sizeof(int), (void *) &borderCols); clSetKernelArg(kernel, 7, sizeof(int), (void *) &borderRows); clSetKernelArg(kernel, 8, sizeof(float), (void *) &Cap); clSetKernelArg(kernel, 9, sizeof(float), (void *) &Rx); clSetKernelArg(kernel, 10, sizeof(float), (void *) &Ry); clSetKernelArg(kernel, 11, sizeof(float), (void *) &Rz); clSetKernelArg(kernel, 12, sizeof(float), (void *) &step); // Launch kernel error = clEnqueueNDRangeKernel(command_queue, kernel, 2, NULL, global_work_size, local_work_size, 0, NULL, NULL); if (error != CL_SUCCESS) fatal_CL(error, __LINE__); // Flush the queue error = clFlush(command_queue); if (error != CL_SUCCESS) fatal_CL(error, __LINE__); // Swap input and output GPU matrices src = 1 - src; dst = 1 - dst; } // Wait for all operations to finish error = clFinish(command_queue); if (error != CL_SUCCESS) fatal_CL(error, __LINE__); long long end_time = get_time(); long long total_time = (end_time - start_time); printf("\nKernel time: %.3f seconds\n", ((float) total_time) / (1000*1000)); return src; } void usage(int argc, char **argv) { fprintf(stderr, "Usage: %s \n", argv[0]); fprintf(stderr, "\t - number of rows/cols in the grid (positive integer)\n"); fprintf(stderr, "\t - pyramid heigh(positive integer)\n"); fprintf(stderr, "\t - number of iterations\n"); fprintf(stderr, "\t - name of the file containing the initial temperature values of each cell\n"); fprintf(stderr, "\t - name of the file containing the dissipated power values of each cell\n"); fprintf(stderr, "\t - name of the output file\n"); fprintf(stderr, "\t - the target platform to use\n"); fprintf(stderr, "\t - the device to use\n"); fprintf(stderr, "\t - 1 for GPU, 0 for CPU\n"); exit(1); } int main(int argc, char** argv) { printf("WG size of kernel = %d X %d\n", BLOCK_SIZE, BLOCK_SIZE); // Command line arguments "parsing" int size; int grid_rows,grid_cols = 0; float *FilesavingTemp,*FilesavingPower; //,*MatrixOut; char *tfile, *pfile, *ofile; int total_iterations = 60; int pyramid_height = 1; // number of iterations int platform_id = 0; int device_id = 0; int use_gpu = 0; if (argc < 10) usage(argc, argv); if((grid_rows = atoi(argv[1]))<=0|| (grid_cols = atoi(argv[1]))<=0|| (pyramid_height = atoi(argv[2]))<=0|| (total_iterations = atoi(argv[3]))<=0) usage(argc, argv); tfile=argv[4]; pfile=argv[5]; ofile=argv[6]; platform_id = atoi(argv[7]); device_id = atoi(argv[8]); use_gpu = atoi(argv[9]); size=grid_rows*grid_cols; cl_int error; cl_uint num_platforms; // Selector for CPU/GPU cl_device_type device_type = use_gpu ? CL_DEVICE_TYPE_GPU : CL_DEVICE_TYPE_CPU; // Get the number of platforms error = clGetPlatformIDs(0, NULL, &num_platforms); if (error != CL_SUCCESS) fatal_CL(error, __LINE__); // Get the list of platforms cl_platform_id* platforms = (cl_platform_id *) malloc(sizeof(cl_platform_id) * num_platforms); error = clGetPlatformIDs(num_platforms, platforms, NULL); if (error != CL_SUCCESS) fatal_CL(error, __LINE__); // Print the chosen platform, selected on the basis of the corresponding command line aegument cl_platform_id platform = platforms[platform_id]; char pbuf[100]; error = clGetPlatformInfo(platform, CL_PLATFORM_VENDOR, sizeof(pbuf), pbuf, NULL); if (error != CL_SUCCESS) fatal_CL(error, __LINE__); printf("Platform: %s\n", pbuf); // Create a GPU context cl_context_properties context_properties[3] = { CL_CONTEXT_PLATFORM, (cl_context_properties) platform, 0}; context = clCreateContextFromType(context_properties, device_type, NULL, NULL, &error); if (error != CL_SUCCESS) fatal_CL(error, __LINE__); // Get and print the chosen device (if there are multiple devices, choose the first one) size_t devices_size; error = clGetContextInfo(context, CL_CONTEXT_DEVICES, 0, NULL, &devices_size); if (error != CL_SUCCESS) fatal_CL(error, __LINE__); cl_device_id *devices = (cl_device_id *) malloc(devices_size); error = clGetContextInfo(context, CL_CONTEXT_DEVICES, devices_size, devices, NULL); if (error != CL_SUCCESS) fatal_CL(error, __LINE__); // Select the device passed as command line argument device = devices[device_id]; error = clGetDeviceInfo(device, CL_DEVICE_NAME, sizeof(pbuf), pbuf, NULL); if (error != CL_SUCCESS) fatal_CL(error, __LINE__); printf("Device: %s\n", pbuf); // Create a command queue command_queue = clCreateCommandQueue(context, device, 0, &error); if (error != CL_SUCCESS) fatal_CL(error, __LINE__); // --------------- pyramid parameters --------------- int borderCols = (pyramid_height)*EXPAND_RATE/2; int borderRows = (pyramid_height)*EXPAND_RATE/2; int smallBlockCol = BLOCK_SIZE-(pyramid_height)*EXPAND_RATE; int smallBlockRow = BLOCK_SIZE-(pyramid_height)*EXPAND_RATE; int blockCols = grid_cols/smallBlockCol+((grid_cols%smallBlockCol==0)?0:1); int blockRows = grid_rows/smallBlockRow+((grid_rows%smallBlockRow==0)?0:1); FilesavingTemp = (float *) malloc(size*sizeof(float)); FilesavingPower = (float *) malloc(size*sizeof(float)); // MatrixOut = (float *) calloc (size, sizeof(float)); if( !FilesavingPower || !FilesavingTemp) // || !MatrixOut) fatal("unable to allocate memory"); // Read input data from disk readinput(FilesavingTemp, grid_rows, grid_cols, tfile); readinput(FilesavingPower, grid_rows, grid_cols, pfile); // Load kernel source from file const char *source = load_kernel_source("hotspot_kernel.cl"); size_t sourceSize = strlen(source); // Compile the kernel cl_program program = clCreateProgramWithSource(context, 1, &source, &sourceSize, &error); if (error != CL_SUCCESS) fatal_CL(error, __LINE__); char clOptions[110]; // sprintf(clOptions,"-I../../src"); sprintf(clOptions," "); #ifdef BLOCK_SIZE sprintf(clOptions + strlen(clOptions), " -DBLOCK_SIZE=%d", BLOCK_SIZE); #endif // Create an executable from the kernel error = clBuildProgram(program, 1, &device, clOptions, NULL, NULL); // Show compiler warnings/errors static char log[65536]; memset(log, 0, sizeof(log)); clGetProgramBuildInfo(program, device, CL_PROGRAM_BUILD_LOG, sizeof(log)-1, log, NULL); if (strstr(log,"warning:") || strstr(log, "error:")) printf("<<<<\n%s\n>>>>\n", log); if (error != CL_SUCCESS) fatal_CL(error, __LINE__); kernel = clCreateKernel(program, "hotspot", &error); if (error != CL_SUCCESS) fatal_CL(error, __LINE__); long long start_time = get_time(); // Create two temperature matrices and copy the temperature input data cl_mem MatrixTemp[2]; // Create input memory buffers on device MatrixTemp[0] = clCreateBuffer(context, CL_MEM_READ_WRITE | CL_MEM_USE_HOST_PTR, sizeof(float) * size, FilesavingTemp, &error); if (error != CL_SUCCESS) fatal_CL(error, __LINE__); // Lingjie Zhang modifited at Nov 1, 2015 //MatrixTemp[1] = clCreateBuffer(context, CL_MEM_READ_WRITE | CL_MEM_ALLOC_HOST_PTR, sizeof(float) * size, NULL, &error); MatrixTemp[1] = clCreateBuffer(context, CL_MEM_READ_WRITE , sizeof(float) * size, NULL, &error); // end Lingjie Zhang modification if (error != CL_SUCCESS) fatal_CL(error, __LINE__); // Copy the power input data cl_mem MatrixPower = clCreateBuffer(context, CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR, sizeof(float) * size, FilesavingPower, &error); if (error != CL_SUCCESS) fatal_CL(error, __LINE__); // Perform the computation int ret = compute_tran_temp(MatrixPower, MatrixTemp, grid_cols, grid_rows, total_iterations, pyramid_height, blockCols, blockRows, borderCols, borderRows, FilesavingTemp, FilesavingPower); // Copy final temperature data back cl_float *MatrixOut = (cl_float *) clEnqueueMapBuffer(command_queue, MatrixTemp[ret], CL_TRUE, CL_MAP_READ, 0, sizeof(float) * size, 0, NULL, NULL, &error); if (error != CL_SUCCESS) fatal_CL(error, __LINE__); long long end_time = get_time(); printf("Total time: %.3f seconds\n", ((float) (end_time - start_time)) / (1000*1000)); // Write final output to output file writeoutput(MatrixOut, grid_rows, grid_cols, ofile); error = clEnqueueUnmapMemObject(command_queue, MatrixTemp[ret], (void *) MatrixOut, 0, NULL, NULL); if (error != CL_SUCCESS) fatal_CL(error, __LINE__); clReleaseMemObject(MatrixTemp[0]); clReleaseMemObject(MatrixTemp[1]); clReleaseMemObject(MatrixPower); clReleaseContext(context); return 0; }