#include "find_ellipse.h" #include "track_ellipse.h" // Global variables used by OpenCL functions cl_context context; cl_command_queue command_queue; cl_device_id device; // Helper function to print usage void usage(char *argv0) { char *help = "\nUsage: %s [switches] \n\n" " -i :input file \n" " -f :frames to process \n" " -p platform_id :OCL platform to use [default=0]\n" " -d device_id :OCL device to use [default=0]\n" " -g use_gpu :1 for GPU 0 for CPU [default=0]\n"; fprintf(stderr, help, argv0); exit(-1); } int main(int argc, char ** argv) { // Let the user specify the number of frames to process int num_frames = 0; // Open video file char *video_file_name = 0; // Arguments parsing for platform, device and type // Variables to store information on platform and device to use_gpu int platform_id = 0; int device_id = 0; int use_gpu = 0; /* obtain command line arguments and change appropriate options */ int opt; extern char *optarg; while ((opt=getopt(argc,argv,"i:f:p:d:g:"))!= EOF) { switch (opt) { case 'p': platform_id = atoi(optarg); break; case 'd': device_id = atoi(optarg); break; case 'g': use_gpu = atoi(optarg); break; case 'i': video_file_name = optarg; break; case 'f': num_frames = atoi(optarg); break; case '?': usage(argv[0]); break; default: usage(argv[0]); break; } } // Choose the best GPU in case there are multiple available choose_GPU(platform_id, device_id, use_gpu); // Keep track of the start time of the program long long program_start_time = get_time(); avi_t *cell_file = AVI_open_input_file(video_file_name, 1); if (cell_file == NULL) { AVI_print_error("Error with AVI_open_input_file"); exit(EXIT_FAILURE); } // Transfer precomputed constants to the GPU compute_constants(); int i, j, *crow, *ccol, pair_counter = 0, x_result_len = 0, Iter = 20, ns = 4, k_count = 0, n; MAT *cellx, *celly, *A; double *GICOV_spots, *t, *G, *x_result, *y_result, *V, *QAX_CENTERS, *QAY_CENTERS; double threshold = 1.8, radius = 10.0, delta = 3.0, dt = 0.01, b = 5.0; // Extract a cropped version of the first frame from the video file MAT *image_chopped = get_frame(cell_file, 0, 1, 0); printf("Detecting cells in frame 0\n"); // Get gradient matrices in x and y directions MAT *grad_x = gradient_x(image_chopped); MAT *grad_y = gradient_y(image_chopped); m_free(image_chopped); // Get GICOV matrices corresponding to image gradients long long GICOV_start_time = get_time(); MAT *gicov = GICOV(grad_x, grad_y); long long GICOV_end_time = get_time(); // Dilate the GICOV matrices long long dilate_start_time = get_time(); MAT *img_dilated = dilate(gicov); long long dilate_end_time = get_time(); // Find possible matches for cell centers based on GICOV and record the rows/columns in which they are found pair_counter = 0; crow = (int *) malloc(gicov->m * gicov->n * sizeof(int)); ccol = (int *) malloc(gicov->m * gicov->n * sizeof(int)); for(i = 0; i < gicov->m; i++) { for(j = 0; j < gicov->n; j++) { if(!double_eq(m_get_val(gicov,i,j), 0.0) && double_eq(m_get_val(img_dilated,i,j), m_get_val(gicov,i,j))) { crow[pair_counter]=i; ccol[pair_counter]=j; pair_counter++; } } } GICOV_spots = (double *) malloc(sizeof(double) * pair_counter); for(i = 0; i < pair_counter; i++) GICOV_spots[i] = sqrt(m_get_val(gicov, crow[i], ccol[i])); G = (double *) calloc(pair_counter, sizeof(double)); x_result = (double *) calloc(pair_counter, sizeof(double)); y_result = (double *) calloc(pair_counter, sizeof(double)); x_result_len = 0; for (i = 0; i < pair_counter; i++) { if ((crow[i] > 29) && (crow[i] < BOTTOM - TOP + 39)) { x_result[x_result_len] = ccol[i]; y_result[x_result_len] = crow[i] - 40; G[x_result_len] = GICOV_spots[i]; x_result_len++; } } // Make an array t which holds each "time step" for the possible cells t = (double *) malloc(sizeof(double) * 36); for (i = 0; i < 36; i++) { t[i] = (double)i * 2.0 * PI / 36.0; } // Store cell boundaries (as simple circles) for all cells cellx = m_get(x_result_len, 36); celly = m_get(x_result_len, 36); for(i = 0; i < x_result_len; i++) { for(j = 0; j < 36; j++) { m_set_val(cellx, i, j, x_result[i] + radius * cos(t[j])); m_set_val(celly, i, j, y_result[i] + radius * sin(t[j])); } } A = TMatrix(9,4); V = (double *) malloc(sizeof(double) * pair_counter); QAX_CENTERS = (double * )malloc(sizeof(double) * pair_counter); QAY_CENTERS = (double *) malloc(sizeof(double) * pair_counter); memset(V, 0, sizeof(double) * pair_counter); memset(QAX_CENTERS, 0, sizeof(double) * pair_counter); memset(QAY_CENTERS, 0, sizeof(double) * pair_counter); // For all possible results, find the ones that are feasibly leukocytes and store their centers k_count = 0; for (n = 0; n < x_result_len; n++) { if ((G[n] < -1 * threshold) || G[n] > threshold) { MAT * x, *y; VEC * x_row, * y_row; x = m_get(1, 36); y = m_get(1, 36); x_row = v_get(36); y_row = v_get(36); // Get current values of possible cells from cellx/celly matrices x_row = get_row(cellx, n, x_row); y_row = get_row(celly, n, y_row); uniformseg(x_row, y_row, x, y); // Make sure that the possible leukocytes are not too close to the edge of the frame if ((m_min(x) > b) && (m_min(y) > b) && (m_max(x) < cell_file->width - b) && (m_max(y) < cell_file->height - b)) { MAT * Cx, * Cy, *Cy_temp, * Ix1, * Iy1; VEC *Xs, *Ys, *W, *Nx, *Ny, *X, *Y; Cx = m_get(1, 36); Cy = m_get(1, 36); Cx = mmtr_mlt(A, x, Cx); Cy = mmtr_mlt(A, y, Cy); Cy_temp = m_get(Cy->m, Cy->n); for (i = 0; i < 9; i++) m_set_val(Cy, i, 0, m_get_val(Cy, i, 0) + 40.0); // Iteratively refine the snake/spline for (i = 0; i < Iter; i++) { int typeofcell; if(G[n] > 0.0) typeofcell = 0; else typeofcell = 1; splineenergyform01(Cx, Cy, grad_x, grad_y, ns, delta, 2.0 * dt, typeofcell); } X = getsampling(Cx, ns); for (i = 0; i < Cy->m; i++) m_set_val(Cy_temp, i, 0, m_get_val(Cy, i, 0) - 40.0); Y = getsampling(Cy_temp, ns); Ix1 = linear_interp2(grad_x, X, Y); Iy1 = linear_interp2(grad_x, X, Y); Xs = getfdriv(Cx, ns); Ys = getfdriv(Cy, ns); Nx = v_get(Ys->dim); for (i = 0; i < Ys->dim; i++) v_set_val(Nx, i, v_get_val(Ys, i) / sqrt(v_get_val(Xs, i)*v_get_val(Xs, i) + v_get_val(Ys, i)*v_get_val(Ys, i))); Ny = v_get(Xs->dim); for (i = 0; i < Xs->dim; i++) v_set_val(Ny, i, -1.0 * v_get_val(Xs, i) / sqrt(v_get_val(Xs, i)*v_get_val(Xs, i) + v_get_val(Ys, i)*v_get_val(Ys, i))); W = v_get(Nx->dim); for (i = 0; i < Nx->dim; i++) v_set_val(W, i, m_get_val(Ix1, 0, i) * v_get_val(Nx, i) + m_get_val(Iy1, 0, i) * v_get_val(Ny, i)); V[n] = mean(W) / std_dev(W); // Find the cell centers by computing the means of X and Y values for all snaxels of the spline contour QAX_CENTERS[k_count] = mean(X); QAY_CENTERS[k_count] = mean(Y) + TOP; k_count++; // Free memory v_free(W); v_free(Ny); v_free(Nx); v_free(Ys); v_free(Xs); m_free(Iy1); m_free(Ix1); v_free(Y); v_free(X); m_free(Cy_temp); m_free(Cy); m_free(Cx); } // Free memory v_free(y_row); v_free(x_row); m_free(y); m_free(x); } } // Free memory free(V); free(ccol); free(crow); free(GICOV_spots); free(t); free(G); free(x_result); free(y_result); m_free(A); m_free(celly); m_free(cellx); m_free(img_dilated); m_free(gicov); m_free(grad_y); m_free(grad_x); // Report the total number of cells detected printf("Cells detected: %d\n\n", k_count); // Report the breakdown of the detection runtime printf("Detection runtime\n"); printf("-----------------\n"); printf("GICOV computation: %.5f seconds\n", ((float) (GICOV_end_time - GICOV_start_time)) / (1000*1000)); printf(" GICOV dilation: %.5f seconds\n", ((float) (dilate_end_time - dilate_start_time)) / (1000*1000)); printf(" Total: %.5f seconds\n", ((float) (get_time() - program_start_time)) / (1000*1000)); // Now that the cells have been detected in the first frame, // track the ellipses through subsequent frames if (num_frames > 1) printf("\nTracking cells across %d frames\n", num_frames); else printf("\nTracking cells across 1 frame\n"); long long tracking_start_time = get_time(); int num_snaxels = 20; ellipsetrack(cell_file, QAX_CENTERS, QAY_CENTERS, k_count, radius, num_snaxels, num_frames); printf(" Total: %.5f seconds\n", ((float) (get_time() - tracking_start_time)) / (float) (1000*1000*num_frames)); // Report total program execution time printf("\nTotal application run time: %.5f seconds\n", ((float) (get_time() - program_start_time)) / (1000*1000)); return 0; }