|
@@ -2,7 +2,7 @@
|
|
|
##### Luca Oddone Breveglieri
|
|
|
###### 8 october 2015
|
|
|
|
|
|
-### Operations on languages
|
|
|
+## Operations on languages
|
|
|
Applies (and is defined) to each string in the language
|
|
|
$$L^R=\{|x=y^R\wedge y\in L\}$$
|
|
|
#### Prefix-free language
|
|
@@ -14,27 +14,34 @@ $$\text{prefix(L)} \cap L=\Phi$$
|
|
|
$$L'L''=\{xy|x\in L' \wedge y \in L''\}$$
|
|
|
#### m-th power (m≥0)
|
|
|
$$L^m=L^{m-1}L,m>0\;\;L^0=\{\varepsilon\}$$
|
|
|
-#### Star Operator
|
|
|
-Also called Kleene star or Concatenation closure.
|
|
|
-##### The union of all powers of a language
|
|
|
-$$L=\{ab,ba\}\;L^*=\{\varepsilon,ab,ba,abab,abba,baab,baba,...\}$$
|
|
|
-**
|
|
|
+---
|
|
|
+### Set-theoretic Operations
|
|
|
+#### Universal language
|
|
|
+The set of all strings defined over the alphabet $\Sigma$, also called __free monoid__.
|
|
|
+#### Complement of a language
|
|
|
+Set-theoretic difference between the universal language and the given language
|
|
|
+$$\lnot L =L_{universal} \setminus L$$
|
|
|
+#### Set-theoretic difference
|
|
|
|
|
|
+---
|
|
|
+### Star Operator
|
|
|
+Also called Kleene star or Concatenation closure.
|
|
|
+Is the union of all powers of a language
|
|
|
+$$L=\{ab,ba\}\;L^*=\{\varepsilon,ab,ba,abab,abba,baab,baba,...\}$$
|
|
|
+<!--*-->
|
|
|
#### Properties:
|
|
|
- monotonic
|
|
|
- closed w.r.t. Concatenation
|
|
|
- idempotent
|
|
|
- commutes with mirroring
|
|
|
|
|
|
-#### Example of star operator
|
|
|
+##### example
|
|
|
$$\sum_A=\{A,B,...,Z\} \; \sum_N=\{0,1,2,...,9\}$$
|
|
|
|
|
|
+#### Cross Operator
|
|
|
+Also called Kleene cross, or $\varepsilon$-free concatenation closure
|
|
|
+$$\{ab,bb\}^+ =\{ab,bb,ab^3,b^2ab,abab,b^4,...\}$$
|
|
|
+
|
|
|
#### Quotient Operator
|
|
|
It shortens the phrases of a language L' by stripping off a suffix out of another languare L''
|
|
|
$$L=L'/L''=\{y|(x=yz\in L') x\in L''\}$$
|
|
|
-
|
|
|
----
|
|
|
-### Regular Expressions
|
|
|
-
|
|
|
-__Regular Expresions__ are defined by operators over an alphabet,
|
|
|
-The operation admitted are:
|