$X{ij}$ Prod $i \in I, j \in J$ $V{ij}$ Sold $i \in I, j \in J$ $Z_{ij}$ Store $i \in I, j \in J$
$$max \sum_{I,J}{Vi*r_i-(ciX{ij}+miZ{ij})}$$
Max production $$\sum{I}{Z{ij}\le K \forall j \in J}$$ Sold cannot exceed produced $$V{ij}\le d{ij} \forall i \in I, \forall j \in J $$ Inventory balance $$Z{ij}-Z{ij-1}+X{ij}-V{ij} \forall i \in I, \forall j \in J$$ Initial production $$X_{i0}=0 \forall i \in I $$
$$\sumI{\frac{x{ij}}{q_i}}\le b_j \forall j \in J$$
$$x_{ij} \le 0, Integer$$
$$v_ij,z_ij\ge 0$$
To define the variable $Z$ we can use
VAR Z{I,J,UNION{0}}